Dalam artikel kali ini, kita akan mempelajari penyajian Data statistik dalam bentuk tabel, diagram batang, garis, lingkaran, tabel distribusi frekuensi, relatif dan komulatif, histogram, poligon frekuensi, dan ogive. berikut penjelasan lengkapnya.
Ada dua cara penyajian data yang sering dilakukan, yaitu :
Ada dua cara penyajian data yang sering dilakukan, yaitu :
1) daftar atau tabel,
2) grafik atau diagram.
Berikut akan dijelaskan.
Berikut akan dijelaskan.
1. Penyajian Data dalam Bentuk Tabel
Misalkan, hasil ulangan Bahasa Indonesia 37 siswa kelas XI SMA 3 disajikan dalam tabel di bawah. Penyajian data pada Tabel 1.1 dinamakan penyajian data sederhana. Dari tabel 1.1, Anda dapat menentukan banyak siswa yang mendapat nilai 9, yaitu sebanyak 7 orang. Berapa orang siswa yang mendapat nilai 5? Nilai berapakah yang paling banyak diperoleh siswa?
Jika data hasil ulangan bahasa Indonesia itu disajikan dengan cara mengelompokkan data nilai siswa, diperoleh tabel frekuensi berkelompok seperti pada Tabel 2.. Tabel 2. dinamakan Tabel Distribusi Frekuensi.
A. Penyajian Data Sederhana
A. Penyajian Data Sederhana
Tabel 1. Penyajian data sederhana
Nilai
|
Frekuensi
|
2
|
7
|
4
|
3
|
5
|
5
|
6
|
4
|
7
|
10
|
9
|
7
|
10
|
1
|
Di atas adalah contoh tabel penyajian sederhana.
B. Tabel Frekuensi Distribusi
Tabel 2. Tabel Frekuensi Distribusi
Tabel 2. Tabel Frekuensi Distribusi
Interval Kelas
|
Turus
|
Frekuensi
|
1–2
|
EB
|
7
|
3–4
|
C
|
3
|
5–6
|
EC
|
8
|
7–8
|
EE
|
10
|
9–10
|
EC
|
8
|
Jumlah
|
37
|
Di atas adalah contoh Tabel frekuensi distribusi.
2. Penyajian Data dalam Bentuk Diagram
Kerapkali data yang disajikan dalam bentuk tabel sulit untuk dipahami. Lain halnya jika data tersebut disajikan dalam bentuk diagram maka Anda akan dapat lebih cepat memahami data itu. Diagram adalah gambar yang menyajikan data secara visual yang biasanya berasal dari tabel yang telah dibuat. Meskipun demikian, diagram masih memiliki kelemahan, yaitu pada umumnya diagram tidak dapat memberikan gambaran yang lebih detail.
A. Diagram Batang Vertikal dan Horizontal
Diagram Batang
Diagram batang biasanya digunakan untuk menggambarkan data diskrit (data cacahan). Diagram batang adalah bentuk penyajian data statistik dalam bentuk batang yang dicatat dalam interval tertentu pada bidang cartesius.
Contoh Soal 1 :
Selama 1 tahun, toko "Anggo" mencatat keuntungan setiap bulan sebagai berikut.Tabel 3. Keuntungan Toko "Anggo" per Bulan (dalam jutaan rupiah)
Bulan ke
|
2,5
|
1,8
|
2,6
|
4,2
|
3,5
|
3,3
|
4,0
|
5,0
|
2,0
|
4,2
|
6,2
|
6,2
|
Keuntungan
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
a. Buatlah diagram batang vertikal dari data di atas.
b. Berapakah keuntungan terbesar yang diperoleh Toko "Anggo" selama 1 tahun?
c. Kapan Toko "Anggo" memperoleh keuntungan yang sama selama dua bulan berturut-turut?
Penyelesaian :
a. Diagram batang vertikal dari data tersebut, tampak pada gambar berikut.
![]() |
Gambar 1. Diagram batang vertikal Keuntungan Toko "Anggo" per Bulan (dalam jura rupiah) |
b. Dari diagram tersebut tampak bahwa keuntungan terbesar yang diperoleh Toko "Anggo" selama 1 tahun adalah sebesar Rp 6.200.000,00.
c. Toko "Anggo" memperoleh keuntungan yang sama selama dua bulan beturut-turut pada bulan ke-11 dan ke-12.
Di atas adalah contoh penyajian data dengan Diagram Batang.
B. Penyajian Data Dengan Diagram Garis
Contoh Soal 2 :
C. Penyajian Data Dengan Diagram Lingkaran
D. Penyajian Data dengan Histogram
Histogram merupakan diagram frekuensi bertangga yang bentuknya seperti diagram batang. Batang yang berdekatan harus berimpit. Untuk pembuatan histogram, pada setiap interval kelas diperlukan tepi-tepi kelas. Tepi-tepi kelas ini digunakan unntuk menentukan titik tengah kelas yang dapat ditulis sebagai berikut.
Jika di masukkan dalam histogram maka akan membentuk seperti di bawah ini.
Tabel 8. Tabel distribusi frekuensi kumulatif "lebih dari" tentang nilai ulangan Biologi Kelas XI SMA 3.
B. Penyajian Data Dengan Diagram Garis
Diagram Garis
Pernahkah Anda melihat grafik nilai tukar dolar terhadap rupiah atau pergerakan saham di TV? Grafik yang seperti itu disebut diagram garis. Diagram garis biasanya digunakan untuk menggambarkan data tentang m keadaan yang berkesinambungan (sekumpulan data kontinu). Misalnya, jumlah penduduk setiap tahun, perkembangan berat badan bayi setiap bulan, dan suhu badan pasien setiap jam.
Seperti halnya diagram batang, diagram garis pun memerlukan sistem sumbu datar (horizontal) dan sumbu tegak (vertikal) yang saling berpotongan tegak lurus. Sumbu mendatar biasanya menyatakan jenis data, misalnya waktu dan berat. Adapun sumbu tegaknya menyatakan frekuensi data. Langkah-langkah yang dilakukan untuk membuat diagram garis adalah sebagai berikut.
Contoh Soal 2 :
Berikut ini adalah tabel berat badan seorang bayi yang dipantau sejak lahir sampai berusia 9 bulan.
Usia (bulan)
|
3,5
|
4
|
5,2
|
6,4
|
6,8
|
7,5
|
7,5
|
8
|
8,8
|
8,6
|
Berat Badan
(kg)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
a. Buatlah diagram garisnya.
b. Pada usia berapa bulan berat badannya menurun?
c. Pada usia berapa bulan berat badannya tetap?
Pembahasan :
a. Langkah ke-1
Buatlah sumbu mendatar yang menunjukkan usia anak (dalam bulan) dan sumbu tegak yang menunjukkan berat badan anak (dalam kg).
Langkah ke-2
Gambarlah titik koordinat yang menunjukkan data pengamatan pada waktu t bulan.
Langkah ke-3
Secara berurutan sesuai dengan waktu, hubungkan titik-titik koordinat tersebut dengan garis lurus.
Dari ketiga langkah tersebut, diperoleh diagram garis dari data tersebut tampak pada Gambar 2.
![]() |
Gambar 2. Diagram garis berat badan bayi sejak usia 0 bulan–9 bulan |
b. Dari diagram tersebut dapat dilihat bahwa berat badan bayi menurun pada usai 8 sampai 9 bulan.
c. Berat badan bayi tetap pada usia 5 sampai 6 bulan. Darimana Anda memperoleh hasil ini? Jelaskan.
Observasi: Interpolasi dan Ekstrapolasi Data
Anda dapat melakukan observasi terhadap kecenderungan data yang disajikan pada suatu diagram garis. Dari observasi ini, Anda dapat membuat perkiraan-perkiraan dengan cara interpolasi dan ekstrapolasi. Hal ini ditempuh dengan mengganti garis patah pada diagram garis menjadi garis lurus. Interpolasi data adalah menaksir data atau memperkirakan data di antara dua keadaan (misalnya waktu) yang berurutan. Misalkan, dari gambar grafik Contoh soal 2. dapat diperkirakan berat badan bayi pada usia 5,5 bulan. Coba Anda amati grafik tersebut, kemudian tentukan berat badan bayi pada usia 5,5 bulan.
Ekstrapolasi data adalah menaksir atau memperkirakan data untuk keadaan (waktu) mendatang. Cara yang dapat dilakukan untuk ekstrapolasi adalah dengan memperpanjang ruas garis terujung ke arah kanan. Misalkan, dari gambar grafik soal 2. dapat diperkirakan berat badan bayi pada usia 10 bulan. Jika garis lurus sudah ditentukan, Anda dapat menentukan interpolasi data. Untuk ekstrapolasi data, Anda harus berhati-hati. Menurut diagram garis, berapa kira-kira berat badan bayi pada usia 10 bulan? Berikan alasan Anda.
Perhatikan langkah-langkah di bawah ini untuk membuat diagram Garis.
- Buatlah suatu koordinat (berbentuk bilangan) dengan sumbu mendatar menunjukkan waktu dan sumbu tegak menunjukkan data pengamatan.
- Gambarlah titik koordinat yang menunjukkan data pengamatan pada waktu t.
- Secara berurutan sesuai dengan waktu, hubungkan titiktitik koordinat tersebut dengan garis lurus.
Diagram Lingkaran
Untuk mengetahui perbandingan suatu data terhadap keseluruhan, suatu data lebih tepat disajikan dalam bentuk diagram lingkaran. Diagram lingkaran adalah bentuk penyajian data statistika dalam bentuk lingkaran yang dibagi menjadi beberapa juring lingkaran.
Langkah-langkah untuk membuat diagram lingkaran adalah sebagai berikut.
Agar lebih jelasnya, pelajarilah contoh berikut.
Contoh Soal 3 :
Tabel berikut menunjukkan banyaknya siswa di suatu kabupaten menurut tingkat sekolah pada tahun 2007.
Tingkat Pendidikan
|
Banyaknya Siswa
|
SD
SMP
SMA
|
175
600
225
|
a. Buatlah diagram lingkaran untuk data tersebut.
b. Berapa persen siswa yang menyelesaikan sekolah sampai pada tingkat SMP?
c. Berapa persen siswa yang menyelesaikan sekolah sampai pada tingkat SMA?
Pembahasan :
a. Jumlah seluruh siswa adalah 1.000 orang. Seluruh siswa diklasifikasikan menjadi 5 katagori: SD = 175 orang, SMP = 600 orang, dan SMA = 225 orang.
• Siswa SD = (175/1.000) x 100% = 17,5%
Besar sudut sektor lingkaran = 17,5% × 360° = 63°
• Siswa SMP = (600/1.000) x 100% = 60%
Besar sudut sektor lingkaran = 60% × 360° = 216°
• Siswa SMA= (225/1.000) 100% = 22,5%
Besar sudut sektor lingkaran = 22,5% × 360° = 81°
![]() |
Gambar 3. Diagram lingkaran banyaknya siswa di suatu kabupaten menurut tingkat sekolah pada tahun 2007 |
Diagram lingkaran ditunjukkan pada Gambar 3.
b. Persentase siswa yang menyelesaikan sekolah sampai pada tingkat SMP adalah 60%.
c. Persentase siswa yang menyelesaikan sekolah sampai pada tingkat SMAadalah 22,5%.
Cobalah anda membuat pada kertas.
- Buatlah sebuah lingkaran pada kertas.
- Bagilah lingkaran tersebut menjadi beberapa juring lingkaran untuk menggambarkan kategori yang datanya telah diubah ke dalam derajat.
Histogram merupakan diagram frekuensi bertangga yang bentuknya seperti diagram batang. Batang yang berdekatan harus berimpit. Untuk pembuatan histogram, pada setiap interval kelas diperlukan tepi-tepi kelas. Tepi-tepi kelas ini digunakan unntuk menentukan titik tengah kelas yang dapat ditulis sebagai berikut.
Titik tengah kelas = ½ (tepi atas kelas + tepi bawah kelas)
Poligon frekuensi dapat dibuat dengan menghubungkan titik-titik tengah setiap puncak persegipanjang dari histogram secara berurutan. Agar poligon "tertutup" maka sebelum kelas paling bawah dan setelah kelas paling atas, masing-masing ditambah satu kelas.
Contoh Soal 6 :
Tabel distribusi frekuensi hasil ujian matematika Kelas XI SMA Cendekia di Kalimantan Barat diberikan pada Tabel 6. Buatlah histogram dan poligon frekuensinya.
Tablel 6. Tabel distribusi frekuensi hasil ujian matematika Kelas XI SMA Cendekia di Kalimantan Barat
Interval Kelas
|
Turus
|
Frekuensi
|
16–25
|
E
|
5
|
26–35
|
C
|
3
|
36–45
|
ED
|
9
|
46–55
|
EE
|
10
|
56–65
|
EA
|
6
|
66–75
|
B
|
2
|
Jumlah
|
35
|
Interval Kelas
|
Turus
|
Frekuensi
|
15–24
|
C
|
3
|
25–34
|
E
|
5
|
35–44
|
ED
|
9
|
45–54
|
EC
|
8
|
55–64
|
EC
|
8
|
65–74
|
B
|
2
|
Jumlah
|
35
|
- frekuensi kumulatif "kurang dari" ("kurang dari" diambil terhadap tepi atas kelas);
- frekuensi kumulatif "lebih dari" ("lebih dari" diambil terhadap tepi bawah kelas).
Kelas Interval
|
Frekuensi
|
21–30
|
2
|
31–40
|
3
|
41–50
|
11
|
51–60
|
20
|
61–70
|
33
|
71–80
|
24
|
81–90
|
7
|
100
|
Jika di masukkan dalam histogram maka akan membentuk seperti di bawah ini.
![]() |
Gambar 4. Histogram hasil ujian matematika Kelas XI SMA Cendekia di Kalimantan Barat. |
Jawaban :
Dari histogram tersebut tampak bahwa kebanyakan siswa memperoleh nilai antara 60,5 dan 70,5. Coba Anda ceritakan hal lain dari histogram tersebut.
E. Ogive (Ogif)
Grafik yang menunjukkan frekuensi kumulatif kurang dari atau frekuensi kumulatif lebih dari dinamakan poligon kumulatif.
Untuk populasi yang besar, poligon mempunyai banyak ruas garis patah yang menyerupai kurva sehingga poligon frekuensi kumulatif dibuat mulus, yang hasilnya disebut ogif.
Ada dua macam ogif, yaitu sebagai berikut.
a. Ogif dari frekuensi kumulatif kurang dari disebut ogif positif.
b. Ogif dari frekuensi kumulatif lebih dari disebut ogif negatif.
Contoh Soal 7 :
Tabel 7. dan 8. berturut-turut adalah tabel distribusi frekuensi kumulatif "kurang dari" dan "lebih dari" tentang nilai ulangan Biologi Kelas XI SMA 3.
Tabel 7. dan 8. berturut-turut adalah tabel distribusi frekuensi kumulatif "kurang dari" dan "lebih dari" tentang nilai ulangan Biologi Kelas XI SMA 3.
Tabel 7. Tabel distribusi frekuensi kumulatif "kurang dari" tentang nilai ulangan Biologi Kelas XI SMA 3.
Nilai
|
Frekuensi
|
< 20,5
|
0
|
< 30,5
|
2
|
< 40,5
|
5
|
< 50,5
|
16
|
< 60,5
|
36
|
< 70,5
|
69
|
< 80,5
|
93
|
< 90,5
|
100
|
Tabel 8. Tabel distribusi frekuensi kumulatif "lebih dari" tentang nilai ulangan Biologi Kelas XI SMA 3.
Nilai
|
Frekuensi
|
> 20,5
|
100
|
> 30,5
|
98
|
> 40,5
|
95
|
> 50,5
|
84
|
> 60,5
|
64
|
> 70,5
|
31
|
> 80,5
|
7
|
> 90,5
|
0
|
a. Buatlah ogif positif dan ogif negatif dari tabel tersebut.
b. Berapakah jumlah siswa yang mempunyai nilai Biologi kurang dari 85?
c. Berapakah jumlah siswa yang mempunyai berat badan lebih dari 40?
Pembahasan :
a. Ogif positif dan ogif negatif dari tabel tersebut tampak pada gambar 5.
Gambar 5. Kurva ogif positif dan negatif nilai ulangan Biologi Kelas XI SMA 3.
|
b. Dari kurva ogif positif, tampak siswa yang mempunyai nilai kurang dari 85 adalah sebanyak 93 orang.
c. Dari kurva ogif negatif, tampak siswa yang mempunyai nilai lebih dari 40 adalah sebanyak 96 orang.
Referensi :
Djumanta, W. 2008. Mahir Mengembangkan Kemampuan Matematika 2 : untuk Kelas XI Sekolah Menengah Atas / Madrasah Aliyah. Pusat Perbukuan, Departemen Pendidikan Nasional, Jakarta. p. 250.